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A working hypothesis has been developed to account for a change in character of thermal motion at
glass transition. According to this hypothesis the pronounced onset of anharmonic vibrations is re-
sponsible for a stepwise increase in the thermal expansion coefficient α as well as in the similar
temperature change in specific heat coefficient cp. In this paper the both transitions (the first order
transition at melting point and the second order transition at Tg) are investigated on the basis of the
viewpoint connected with the change in characteristics of motion of the particles, so typical for an
onset of a liquid state. At present, two different definitions for the coefficient of thermal expansion
are used. One is usually adopted in polymer physics, where also the statistical approach to polymer
chains configurations plays the major role in Tg definition. However, the statistical configurational
approach of polymer physics cannot be applied directly to the inorganic glasses and also does not
provide any explanation of relatively small changes in cp values at melting point transition which
sometime occur. Using the interpretation of solid state physics, the present paper intends to make a
first step and bridge over the gap between these two approaches and to explain the Tg transition in
dynamic terms, common to the polymers as well as to the low molecular weight substances. 
Key words: Glass transition; Melting point; Anharmonic oscillations; Jump frequency at glass transition.

Extensive literature exists1–7 providing an overall insight into the problem of Tg transi-
tion of polymers. Some authors, like for example Kaelbe8, emphasize the fact that for
the explanation of Tg transition the concept of existence of holes does not have to be
envisaged explicitly. However, the explanation of Tm phenomena by Frenkel9 connects Tm

with the presence of about 7.5–10% of holes or vacancies. For the polymer rheologists,
the notion which provides the WLF–equation for description of Tg transition and concept of
holes is taken as a fundamental fact10,3 which is granted. In this context it is usually
assumed that at Tg for l vacancy, about 40 particles of main chain which undergoes the
diffusive jumps3,10 are to be taken into account. The number of the holes is then assumed
to grow linearly with increasing temperature above Tg. One important fact is usually
overlooked when explaining Tg transition. The origin of this fact goes back to the
physics of solids in a reasoning such as is given by Kittel11 or Frenkel9 who stated that
the shapes of potential valleys in which the individual particles dwell have substantial
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impact on the coefficient of thermal expansion. Substances like graphite or Invar12 are
characterized by very small coefficients of thermal expansion and also by perfect para-
bolic shape of potential valleys.

THEORY

It will be proved now that the change in the shape of potential valleys is accompanied
by a change in the coefficient of thermal expansion as well as connected with different
types of motion of individual particles. The Tg transition will be understood in this
sense.

The Coefficient of Thermal Expansion

According to Einstein13 and Debye14, specific heats of solids are connected with the
vibration of particles around their equilibrium positions. Every particle of mass m
which sits in a potential hole U characterized by its parabolic shape:

U = U0 + 
1
2
 f ξ2 (1)

undergoes harmonic oscillations under the influence of force

F = − 
dU
dξ  = −f ξ (2)

and exhibits harmonic oscillations characterized by the frequency:

ν = 
1

2π √2f
m

  , (3)

where U0 is the basic level of internal energy U; ξ = r – r0 is the deviation from the
equilibrium position where r0 is defined as a distance separating two bottoms of neigh-
bouring potential valleys. f = d2U/dξ2 > 0 is the coefficient of the quasi-elastic force,
connected with the bulk modulus K* (ref.9), K* = f/r0. According to Müller12, substances
like Invar or carbon are distinguished by the harmonic oscillations according to Eqs (1)
and (2), and the character of potential holes which is defined by Eq. (1) does not
change with increasing temperature. The fact that in the liquid the potential hole has
not the shape of a paraboloid but rather a “pan-like” shape has already been mentioned
by Hirschfelder and co-workers15 and recently studied in detail by Luck16.
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According to Müller12 and Frenkel9, every compound needs for its thermal expansion
to vary the shape of potential valleys in which the individual particles are located. The
change in the shape of potential valleys is the only way how to achieve the thermal
expansion of substances with temperature. Such change, however, will influence the
strict character of harmonic motion of individual particles. For our purposes of Tm and
Tg considerations it seems to be sufficient to add just one perturbation term to Eq. (1).
This allows us to illustrate the point. We get:

U = U0 + 
1
2

 f ξ2 − 
1
3

 gξ3  . (4)

We consider just the unidimensional case only. We assume that for the substances
characterized by very small coefficient of thermal expansion the function g → 0.

For the choice of thermal energy U0 = 0, the energy U has to be equal to energy kT
of thermal motion, where k is the Boltzmann constant. We get:

U = 
1
2
 kT = 

1
2

 f ξ2
__

  , (5)

where ξ2
__

 is the average of the square of deviation from the bottom of potential valley.
The average value of the distance between the particles remains constant and equals to
r0 since the mean value of ξ

_
 vanishes. That gives:

ξ2
__

 = 
kT
f

  . (6)

Let us now consider the case of anharmonic force F acting in a nonideal case on a
particle sitting in a potential valley given by Eq. (4).

−dU
dξ  = F = −f ξ + gξ2 (7)

Putting its mean value equal to zero gives:

FAV = 0 = −f ξ
_
 + gξ2

__
  . (8)

Equation (8) provides a relation connecting the average deviation ξ
_
 with the shape of

potential valley for real substances. We get:
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ξ
_
 = 

g
f
 ξ2
__

 ≠ 0  . (9)

For harmonic oscillations ξ
_
 would be zero. It can be seen that due to anharmonic

character of thermal motion the average position of particles ξ
_
 has been shifted.

Provided that the particles have been separated by distance r0 and the change in
character of motion for the temperature change dT has been characterized by increase
in g from g′ → 0 to g, then for the relative displacement Dr and coefficient of thermal
expansion α it is:

Dr = 
ξ
r0

  . (10)

Substitution from Eq. (6) into (9) and (10) will give:

α1 = 
1
r0

 
dξ1

__

dT
 = 

1
r0

 
g′
f2

 k (11)

α2 = 
1
r0

 
dξ2

__

dT
 = 

1
r0

 
g
f2

 k  , (12)

where α1, α2 are the coefficients of thermal expansion for two different levels of the
perturbation function g′, g in the solid–liquid transition.

∆α = 
1
r0

 
d ∆ξ

_

dT
 = 

1
r0

 
g − g′

f2
 k  ,     where     ∆α = α2 − α1  . (13)

From the Eqs (8)–(13) it can be seen that the coefficient of thermal expansion can be
associated with the anharmonic character of thermal vibrations. Its sudden change thus
is associated also with different characteristics of the thermal motion of particles. In
that transition not only the rigidity of substance plays role for a change in α which is
expressed by the presence of function f, but also the perturbation function g – g′ regard-
ing the shape of potential valley makes the sudden change in α possible. We can now
associate the change in α in Eq. (13) with the change in α for polymers at Tg which is
about the same4:

∆αTg = (αL − αG)Tg = 0.115 (14)
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∆α = 
0.115

Tg
(15)

∆α ≈ 
g − g′

f2
  . (16)

With the Eqs (15) and (16) we arrive at a new point of view upon Tg transition which
associates the Tg transition with an onset of new form of vibrations, which is pertinent
to every particle of the system. Let us discuss this point of view in the following text.

The Change in the Characteristics of Vibrational Frequency

From Eqs (8)–(16) it can be seen that the Tg transition can be envisaged as a sudden
variation in the function g. If the substance is taken as an ensemble of vibrating har-
monic oscillators which move with characteristic frequency ν under Tg

ν = 
1
2π √f

m
  , (17)

where m means mass of individual particles, then above Tg (where we assume that the
anharmonic character of motion is taking place) a new term appears in the solution for
ξ (ref.24).

For ω = 2πν for the anharmonic oscillator we get according to Kittel and co-
authors24:

ξ = A



cos ωt − 

1
6

 
g
f
 cos 2ωt




  . (18)

The solution for the anharmonic oscillator is characterized by two different frequen-
cies. The influence of the second term depends upon the ratio of g/f.

We can see that the phase transition Tg on microlevel has a dynamic character and
opens new opportunities for mechanical movement for every particle in the sample.
This can explain the stepwise change in the cp at Tg (ref.17). The presence of holes does
not affect the cp too much in Tm vicinity as it is shown in variation of cp data for
inorganic and organic substances9 as well as for the polymers data18,19 in Tm areas. The
substances undergo a much larger change regarding the volume (stepwise change) at Tm

where a much larger amount of holes are created. A question arises whether the concept
of holes is realistic. Here it must be emphasized that Hirshfelder15 assumes the number
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of vacancies to reach the number of particles even at critical conditions. We can envis-
age the structure which will have even higher amount of vacancies at that point (see
Figs 1 and 2).

As we will show in the Example below and in Appendix, the coefficient of thermal
expansion α can be distantly related to Tc of the envisaged subsegment which under-
goes the thermal jumps motion above Tg, pointing thus to the physical background of
function g.

We can conclude that the holes contribute to the combination entropy at Tm or at Tc

(ref.9) where the specific heat cp curves look like the Dirac delta functions in shape.

FIG. 2
The extrapolation of two-dimensional case of
Hirschfelder, Curtiss15,20 and Bird15. If it is
assumed that the increase in number of holes
will cause the interruption of the phase in the
vicinity of TC, then the number of holes will
exceed the number of particles in the ratio of
1 : 2. In the area of typical pc pressures 20–200
atm the holes appear to be almost incom-
pressible8. (Note: Vc = 3b; for the van der
Waals Eq.)

FIG. 1
The notion of critical state according to
Hirschfelder15 and Curtiss20. The notion
which explains the fact that in critical state
there are so many vacancies that the liquid
phase is loosing its continuity in the two-
dimensional model pictured. According to
this notion there is, at the critical state, about
the same number of holes as particles. The
total volume contains about 50% of holes.
(Note: Vc = 2b; for a Dieterici Eq.)

Anharmonic Oscillations 49

Collect. Czech. Chem. Commun. (Vol. 61) (1996)



Table I shows that many substances change cp after melting only little or not at all
(see Table II). It is also seen that the presence of about 10% of holes above Tm does not
result in a big change in cp values. Therefore at Tg, where the number of holes (accord-
ing to Ferry4, Bueche3 or Greasley10) is much smaller than at Tm, the change in cp can
also be explained differently, which our concept of Eqs (13)–(18) does seem to accom-
plish.

In the case of Table II the solution of the anharmonic oscillator has to be searched in
the form of Eq. (18) for two different values of g (g ≠ g′) for the liquid–solid transition.
The change in the second term in the bracket of Eq. (18) brings the change in cp values.

For the character of Tm transition let us quote Frenkel9: “We must finally stress the
well-known fact that the specific heat of condensed bodies is only very slightly affected
by fusion, being somewhat greater just above the melting point than below it. That
means that the character of the heat motion in liquid bodies at least near crystallization
point, remains fundamentally the same as in solid bodies, reducing mainly to small
vibrations about certain equilibrium positions and in case of diatomic and more com-
plex molecules, to rotational oscillations about certain equilibrium orientations”.

From Table I and by assuming the presence of about 10% of holes above Tm it can be
concluded that the vacancy itself does not carry any substantial heat capacity alone and
behaves like a particle in the combination sense only, and even though for the creation
of the vacancy the evaporation energy of the particle approximately is needed.

TABLE II
Example of the compounds for which the Tm transition is accompanied by a larger change in cp

values

Compound N2 Cl2 Br2 CH4 NH3 C6H6

cp(s), cal/mol 11.3 14  14.1 10.6 12.2 26.6

cp(l), cal/mol 13.1 16.2 17.1 13.5 18.4 30.1

TABLE I
The cp values of some compounds9,19 for which vibrational character of thermal motion does not
change substantially at melting point. LDPE and HDPE stand for low-density and high-density poly-
ethylenes, respectively

Compound Na Hg Pb Zn Al LDPE HDPE

   cp(s), cal/mol 7.6 6.7 7.2 7.2 6.8 0.4a 0.35a

   cp(l), cal/mol 8  6.7 7.7 7.9 6.8 0.35a 0.35a

a cal/g.
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EXAMPLE

To relate the function g to the thermodynamic state variables, the van der Waals equa-
tion can be rewritten into the following form:

V = b + 



bp + RT + pV

a



 V2  , (1E)

where the constants a, b have the usual meaning.
If one neglects the cubic and quadratic terms in this equation, the solution of the

remaining linear equation will be a crude approximation to the lowest root of the original
equation, a root that must correspond to the volume of the liquid. This crude approxi-
mation, which is the lowest possible value that V could approach, is simply V = b.

A substitution of this approximation into the right-hand side of Eq. (1E), than yields
a better approximation,

V = b 



1 + 

bRT
a




 = b(1 + αT)  . (2E)

Putting 
b
a

  as  
1

27pcb
 we get α as:

α = 
R

27pcb
  . (3E)

(As it is shown in Appendix, the pc for the polymer subsegment can be related to the
cohesive energy density of the given polymer or to the solubility parameter (pc ≈ δ2).)

Comparing with Eqs (11)–(13): α = 
1
r0

 
gk
f2

 and keeping in mind

r0K
∗ = f  , (4E)

where K* is the bulk modulus9, we can get:

α = 
1

r0
3(K∗)2 gk = 

1
r0
3 

gk
(K∗)2 (5E)

α = 
R

27pcb
 = 

NAk

27pcb
 = 

1
r0
3 

gk
(K∗)2 (6E)
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and taking NAr0
3 as approximately equal to nb we get:

k(NAr0
3)

27pcb
 = 

knb
27pcb

 = 
kn

27pc
 = 

gk
(K∗)2  , (7E)

where n will be a multiplication constant reflecting the local packing.
Furthermore:

g = 
(K∗)2

pc
 
n
27

(8E)

or taking into account that:

pcVc

RTc
 = Zc (9E)

we get:

g ≈ 
(K∗)2Vc

ZcRTc
  . (10E)

Taking into account that for the majority of liquids the bulk modulus in compression
is approximately the same, we can say that, for low-molecular substances, the ratio of
critical volume to critical temperature will play the essential role in determination of
function g. For the polymers then we can assess the size of the subsegment which starts
to move and be mobile at Tg because, according to Hirschfelder, for the low-molecular
substances15 it is Tm/Tc = 2/5 and, according to Brydson18, for the subsegment which is
trapped into the crystal the approximate relation between Tg and Tm is Tg/Tm  ≈ 2/3; thus
for the determination of g we can approximately write:

g ≈ 
(K∗)2

ZcR
 
4Vc

15Tg
(11E)

or simply, since Vc = 3b, we can write:

g ≈ 
rel.  size  of  the  subsegment

Tg
  . (12E)
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Note that this ratio already appears at the left-hand side of Eq. (7E) where the term
pcb is expressed properly.

The relative size of the subsegment can be estimated from the polarizabilities of
individual atoms. Keeping in mind that the polarizability of carbon atom is 0.93 . 10–24 cm3,
we express the individual relative size of atoms as it follows21:

(taking C = 1) C as 1; H as 0.4; Cl = 2.2; O = 0.8; N = 0.9. Furthermore, we can
compare the relative size of polystyrene monomer unit (which is taken as a standard)
with the relative sizes of subsegments for the other polymers which presumably can
play the equivalent role in Tg transition. We are keeping in mind that only for the most
rude approximation the van der Waals coefficient b can be calculated by the addition of
individual atomic polarizabilities τ (ref.22): b = 18.6 τmol NA where τmol stands for the
sum of the individual atomic polarizability contributions. This is the most simple for-
mula. For more precise calculations a correction must be made for the presence of
double and triple bonds, molecular geometry, intermolecular interactions, as well as for
the electrons of free pairs.

We can compare the polystyrene monomeric unit with the polybutadiene monomeric
unit and PVC dimeric unit exactly:

Polystyrene:
Relative size of monomeric unit is 11.6; Tg = 373 K;
rel. size/Tg = 3.10 . 10–2.

1,4-Polybutadiene:
Relative size of cis-1,4-polybutadiene monomeric unit is 6.4; Tg = 202 K;
rel. size/Tg = 3.07 . 10–2.

PVC:
For dimer: Relative size of dimeric unit is 10.8; Tg = 351 K;
rel. size/Tg = 3.16 . 10–2.

Here we can see that the size of the opening for Tg transition must reach twice the size
of monomer unit in order to accommodate the proper values of Tg. However, for poly-
propylene a strange torso of dimer has to be taken as the basic unit to be released at Tg.
It is a dimer minus –CH2– group:

CH2–CH

C6H5

[ ]

CH2–CH=CH–CH2[ ]

CH2–CH–CH2–CH

Cl             Cl

[ ]
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Polypropylene:
Relative size of dimer torso is 9; Tg = 273 K;
rel. size of unit/Tg = 3.28 . 10–2.

The size of an average hole at Tg transition for the polypropylene system seems to be
larger than is the size of monomer unit but smaller than is the dimer unit. The release
of units smaller than indicated in the torso unit, if they occur, must take place at much
lower temperature than is Tg, or otherwise, the intermittent unit must “wait” for its
release till the larger vacancy above Tg (or in vicinity of Tg) is created and larger blocks
are released. The release of smaller units can probably be associated with the existence
of the so-called beta or gamma maxima. Here seems to be the origin for different values
of Tg reported for polyethylene in literature18 where the groups of different size
–(CH2)n>1– can be involved. Thus Brydson has reported eleven different values of Tg’s
for polyethylene from a range of T ∈ 〈–130 °C; +60 °C〉. Just an opposite effect was
observed with poly(vinyl acetate) where the group pictured gives the correlations for Tg

transition (monomer plus –CH2– group):
Polyvinyl acetate:
Relative size of the unit is 9.8; Tg = 301 K
rel. size/Tg = 3.16 . 10–2.

Because of the absence of precise data regarding the bulk modulus whose square
enters into g function formula and also because of the approximate value of the Zc

coefficient we will stop our considerations at this point, hopefully showing just the
direction for possible g function analyses and evaluation.

The constant values in the above-mentioned ratios are not accidental and can be
obtained using an independent way.

According to Bueche3 “It appears that the segmental jump frequency is essentially
the same for all materials as their glass temperatures”. The viscosities η at Tg reach the
values of 1013 poise. Kauzman23 referring to Eyring’s theory stated “The rate k0 at
which its molecules jump from one equilibrium “lattice position” in the liquid state to
another is given by

1
η = 

λ2A
lkT

 k0  , (13E)

CH2–CH–CH2

O–C=O

[ ]

CH3

[–CH–CH2–CH–]

CH3          CH3
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where k is the Boltzmann constant, T is the absolute temperature, λ and l are lengths of
the order of molecular dimension, and A is of the order of such dimensions squared”.
For A = λl and η = const. at Tg we get:

1
k0

 ≈ 
λ3

kTg
(14E)

which is an analogous expression to Eq. (12E).
However, we have to say at this point that, as a result of certain “arbitrariness” in the

choice of the subsequent size λ3 in the above-mentioned examples, the Bueche’s as-
sumption can be fulfilled just roughly or, on the other hand, the satisfying of Bueche’s
assumption would mean that the monomeric unit need not necessarily be the unit “re-
lease” for the diffusion jump motion at Tg.

Thus the analyzes leading to Eq. (12E) have been roughly confirmed.

CONCLUSIONS

Using the simple idea about the shape of potential valley in which the individual par-
ticles of substances undergoe their thermal vibrational motions, it was possible to pro-
vide semiquantitative approximate approach which allows slightly different
understanding of Tg transition. According to the method presented, the change in α at
Tg is associated with deformation of potential valleys in which the thermal motions take
place and also with linear grow in number of vacancies above Tg. The cp change is then
associated with an onset of anharmonic motion in the whole field of particles which
form the system.

It is stated, that at Tg only a very small amount of vacancies is created which itself
cannot be responsible for the constant increase in the cp values above Tg. (The stepwise
change in cp at Tg.)

The onset of anharmonic motion above Tg is connected with increase in the average
amplitude of vibrational motion as well as with the onset of motion which is charac-
terized with a different frequency. This change, which results in a sort of wobbling
motion, affects every particle of the system. This would affect also the sharp change in
fluidity of the system above Tg which can hardly explain the “static” notion about the
imperfections or defects in lattice structure (1 hole per 40 particles). The perturbation
term g must, in the course of time, always compensate the shape of the bottoms of
potential valleys in such a way that for a very small displacement of particles the term
dU/dξ = 0, which seems to be a characteristic of liquid state.
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APPENDIX

The Polymers and the Concept of a Liquid State

For amorphous low molecular weight substances the liquid state can be defined above
the Vogel’s temperature between the points of Tg on one side of the temperature inter-
val and for the point of Tc on the other side of the temperature scale.

In this context the Tc temperature is defined as such a temperature above which the
liquid phase cannot exist under elevated pressures. The reason for this behaviour is
usually not connected with any particular picture or model. In our approach, which is
pictured in Figs 1 and 2, however, the disintegration of liquid phase at Tc takes place as
a result of abundance of holes. This can be envisaged by visual models as well as seen
from the equations of state where for a Dieterici equation we get Vc = 2b or, for
example, for a Peng–Robinson equation25 Vc = 3.9b. The relation Vc = 2b agrees well
with experiment for the substances with low Tc such as is helium16, for example, but for
the hydrocarbons with higher Tc level16, the Peng–Robinson relation25 Vc = 3.9b fits the
experimental data much better.

The polymers in rubberlike state contain slightly more than 10% of vacancies above
their melting points and slightly more than 2.5% of vacancies for amorphous phase at
the temperatures above Tg. If polymer is heated up to the boiling point of its monomer,
about 30% of holes (by volume) will be present. This is essentially the same amount
which would be expected for a monomer where the amount of holes at boiling point
depends on the separation of the boiling point from the Tc or Tg points. Polymers differ
from low molecular weight substances only in one characteristic feature which causes
that the polymer (as a result of mutual segmental connection and entanglements) cannot
form a gas phase. Therefore the point of Tc for a polymer has an only illusory meaning
without any practical significance. Not mentioning the fact that every known polymer
also thermally disintegrates at much lower temperatures. However, the critical pressure
of a subsegment has a connection to the solubility parameter26 and therefore to the
density of cohesive energy. The critical pressure of a subsegment has a quite real
meaning for the amorphous polymers. Some authors which work in the polymer science
in the theory of solubility27 are working quite comfortably with the “envisaged Tc extra-
polations” for a polymer or its segment and also mainly with pc values for polymeric
subchains. According to Lyndersen28, the corresponding value of pc for any particular
subchain of the polymer can be calculated by using the additive rule formula. For low
molecular weight substances Hildebrand26 stated that δ = 1.25 pc

1/2, where pc is in atm
and δ is the solubility parameter in (cal/cm3)1/2.

In analogy to the calculations presented in this paper the polymer chain segment can be
selected and its “hypothetical” pc calculated28 on the basis of the Hildebrand26 formula
as well. The segments which can fit Hildebrand’s formula can be taken as basic
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segments which take part in the process of polymer chain diffusion in the rubber like
state area.

This segment which was determined through such a procedure does not have to coin-
cide with the subsegment presented in above Example, where we have tried to satisfy
the rule of constant frequency of diffusion jumps at Tg.

To conclude this Appendix, we can say that the polymer segments in rubber like
zone are in the state of a liquid with all its attributes, only with an exception which
stems from the polymer disability to form a gas phase, as a result of segmental connections
and entanglements.

SYMBOLS

a, b constants of van der Waals equation a (energy volume), b (volume)
cp specific heat at constant pressure
f proportionality constant of harmonic force (energy/length2)
g function of potential valley distortion (energy/volume)
k Boltzmann constant
k0 the rate at which the molecules jump from one equilibrium position to the other
l length of the molecular dimension
m mass of the particle
n multiplication constant
r the rate of molecular jumps in liquids
pc critical pressure
A the surface of approximate size A = λl
F force acting on the particle
K* modulus of the material in compression
NA Avogadro number
R universal gas constant
T temperature, K
Tm melting point temperature
Tg glass transition temperature
U energy connected with attractive forces
U0 lowest level of energy U of attractive forces
Vc critical volume
V molar volume
Zc Zc = pcVc/RTc

α coefficient of thermal expansion
α1 the coefficient of thermal expansion in the glassy state (based on Eqs (10), (11))
α2 the coefficient of thermal expansion above Tg (based on Eqs (10), (12))
∆α = α2 – α1

αL coefficient of thermal expansion above Tg (based on experiment)
αG coefficient of thermal expansion below Tg (based on experiment)
η viscosity
λ length of the molecular dimension
ξ the coordinate signifying the deviation of particle from the bottom of potential valley
ξ
_

the average value of coordinate
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ξ1

__
the average value of the oscillations of the individual particle below Tg

ξ2

__
the average value of the oscillations of the individual particle above Tg

ν frequency of the particle oscillations below Tg

ν* frequency of the particle oscillations above Tg
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